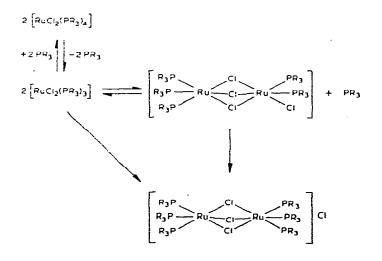
Journal of Organometallic Chemistry, 124 (1977) C23 C26 © Elsevier Sequoia S.A., Lausanne -- Printed in The Netherlands

Preliminary Communication

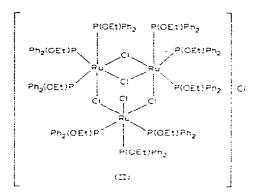
SYNTHESES AND REARRANGEMENT REACTIONS OF $[RuC1_2L_3 \text{ or } 4]$ COMPLEXES $(L=P(OR)_3, P(OR)_2Ph, P(OR)Ph_2)$

W.J. Sime and T.A. Stephenson Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ (Received October 28th, 1976)


Recently, we have shown that the monomeric tertiary phosphine complexes $[RuCl_2(PR_3)_{3 \text{ or } 4}]$, made by exchange of $[RuCl_2(PPh_3)_4]$ with PR_3 in nonpolar solvents [1] undergo facile rearrangement reactions in solution as shown in the Scheme [2]. In an attempt to verify the generality of this rearrangement pattern, we now report the results of studies on exchange reactions of $[RuCl_2(PPh_3)_3](I)$ with tertiary phosphites, phosphonites and phosphinites.

Thus, if (I) is refluxed with excess $P(OMe)_3$ or $P(OMe)_2^{Ph}$ in hexane, yellow crystals $[RuCl_2L_4]$ are formed. Far ir studies suggest a <u>cis/trans</u> mixture for both compounds in the solid state but in solution, ³¹P nmr spectroscopy indicates that irreversible <u>cis+trans</u> isomerisation readily occurs. Although the <u>cis-isomers</u> are then stable indefinitely at ambient temperature in solution, thermolysis or photolysis of $[RuCl_2(P(OMe)_2Ph)_4]$ in CH_2Cl_2 gives $[(P(OMe)_2Ph)_3RuCl_3Ru(P(OMe)_2-Ph)_3]Cl^{\dagger}$ isolated as its BPh_4^{-} salt. However, this does not occur for the $P(OMe)_{-}$ complex. Reaction of (I) and excess $P(OMe)_2Ph$ in methanol gives the $[Ru(P{OMe}_{2}Ph)_{6}]^{2+}$ cation[†] which can also be isolated as a BPh₄ salt.

C24


In contrast, reaction of (I) with excess $P(OR)Ph_2$ (R=Me,Et) in hexane gives orange solids of stoichiometry $[RuCl_2(P(OR)Ph_2)_3]$, shown to be monomeric by molecular weight measurements in benzene. Variable temperature, proton decoupled ³¹P nmr studies indicate rapid intramolecular exchange of $P(OR)Ph_2$ groups at temperatures >160K (single resonance observed) but at lower temperatures, more signals are found eg. for $[RuCl_2(P\{OEt\}Ph_2)_3]$ in $(CD_3)_2CO/C_6H_5CH_3$ at <u>ca</u> 140K, two resonances at 141.1 (broadened doublet) and 167.3ppm (broadened triplet) of relative intensity 2:1 are observed $(\underline{cf}$ the limiting ³¹P nmr spectra of $[RuCl_2L_3]$ [I=PPh_3, PEtPh_2][1]) which is consistent with the square pyramidal geometry expected for a five coordinate d^6 complex [4].

Unlike $[RuCl_2L_4]$ (L=P(OMe)_3. P(OMe)_2Ph), $[RuCl_2(P(OR)Ph_2)_3]$ rapidly rearrange in polar solvents to give ionic complexes. For R=Me, the main product is $[(P{OMe}Ph_2)_3RuCl_3Ru(P{OMe}Ph_2)_3]$ Cl⁺ which is consistent with the mechanism shown in the Scheme. However, for R=Et, the main rearrangement product based on ³¹P nmr. conductivity and analytical data is the trimeric cation $[Ru_3Cl_5(P{OEt}Ph_2)_3]$ Cl for which the cyclic structure (II) is tentatively proposed. ³¹P nmr studies indicate that

(PR3 = PMePh2, PMe2Ph, PEtPh2, PEt2Ph, PC(Ph2)

SCHEME

small amounts of $[Ru_3Cl_5(P{OMe}Ph_2)_9]Cl$ and $[(P{OEt}Ph_2)_3RuCl_3Ru(P{OEt}Ph_2)_3] - Cl^{\dagger}$ respectively are also formed.

Reaction between (I) and excess $P(OMe)Ph_2$ in methanol gives an immediate red solution from which the $[RuC1(P\{OMe\}Ph_2)_4MeOH]^+$ cation can be isolated by addition of NaBPh₄. With (I) and excess $P(OEt)Ph_2$ in ethanol, however, a red <u>dimeric</u> cation $[{RuC1(P\{OEt\}Ph_2)_4}_2]$ (BPh₄)₂ is isolated. On further refluxing, the red solutions turned yellow and $[(P\{OMe\{Ph_2)_3RuC1_3Ru(P\{OMe\}Ph_2)_3]C1$ and $[Ru_3C1_5(P\{OEt\}Ph_2)_9]C1$ respectively are formed. Therefore, a possible rationalisation of the formation of (II) is by facile coupling cf[${RuC1(P\{OEt\}Ph_2)_4}_2]C1_2$ and some unreacted $[RuC1_2(P\{OEt\}Ph_2)_3]$ accompanied by displacement of $P(OEt)Ph_2$. In contrast, rapid dimersation of $[RuC1_2(P\{OMe\}Ph_2)_3]$ to form the stable $[(P\{OMe\}Ph_2)_3^ RuC1_3Ru(P\{OMe\}Ph_2)_3]C1$ appears to be the preferred reaction.

Finally, no evidence has been found here for the formation of neutral dimers $[L_3RuCl_3RuClL_2]$ which is indicative of stronger Ru-P bonds in these alkoxy substituted phosphine complexes compared to those containing tertiary phosphines. In support of this, pyrolysis of $[(P\{0R\}Ph_2)_3RuCl_3Ru(P\{0R\}Ph_2)_3]Cl$ at $120^{\circ}C$ gives $[(P\{0R\}Ph_2)_2(P(0H)Ph_2)-RuCl_3Ru(P(0H)Ph_2)_2(Ph_2PO)](R=Me,Et)$ with no cleavage of Ru-P bonds [5] $(\underline{cf}$ the formation of $[(PEt_2Ph)_3RuCl_3RuCl(PEt_2Ph)_2]$ by pyrolysis of $[(PEt_2Ph)_3RuCl_3Ru(PEt_2Ph)_3]Cl$ [6]).

[†]These compounds have also been synthesised by reaction of $[{RuCl_2C_7H_8}_n]$

C25

C26

Further studies on these rearrangements and of reactions of the products are in progress.

ACKNOWLEDGEMENT

We thank Johnson-Matthey Ltd for loans of ruthenium trichloride, the SRC for the award of a research studentship (WJS) and Dr. A.S.F. Boyd for obtaining the 31 P nmr spectra.

REFERENCES

- 1. P.W.Armit, A.S.F.Boyd and T.A.Stephenson J. Chem. Soc.Dalton, (1975) 1663
- P.W.Armit, W.J.Sime and T.A.Stephenson J. Chem. Soc. Dalton, (1976)
 Paper 6/613
- 3. D.A.Couch and S.D.Robinson Inorg. Chem. 13 (1974) 456
- 4. See P.R.Hoffman and K.G.Caulton J. Amer. Chem. Soc., 97 (1975) 4221 and references therein
- R.O.Gould, C.L.Jones, W.J.Sime and T.A.Stephenson J. Chem. Soc. Dalton, Paper 6/1399
- N.W.Alcock and K.A.Raspin <u>J. Chem. Soc. (A)</u>, (1968) 2108; R.H.Prince and K.A.Raspin <u>ibid</u> (1969) 612